Friday, May 22, 2020
Thursday, May 21, 2020
Networking | Routing And Switching | Tutorial 4 | 2018
Welcome to my 4th new tutorial of the series of networking. In this blog you'll the content about network switches. You'll learn about how to make a communication successful and secure in the same network (LAN) by using STP. As Spanning tree protocol (STP) we used in multi-switched networks. Why we use this protocol in multi-switched network etc.
What is Switch?
A switch is an intelligent device used to connect multiple devices within the same network. The intelligence of is that it requires Media Access Control (MAC) address for communication and doesn't allow broadcast. Let's understand the whole thing by a little example, consider there is a network having 3 end devices name Device-A, Device-B,Device-C connected with each other respectively with the help of switch. When a Device-A sends data to Device-C so that data will only forwarded by switch to Device-C not to Device-B.What is Media Access Control (MAC) address?
A Media Access Control (MAC) address is 48-bit unique physical address given to network interface controller (NIC) or network adapter, for communication within the same network which is given by its manufacturer. It is made up of hexadecimal numbers like a1:b1:cc:ac:2e:f1.What is STP?
STP stands for Spanning tree protocol which is basically used in bridge and switches to prevent loops when you have a redundant links in the Ethernet networks. If the loop is present in the Ethernet network so the whole network will suffer because there will MAC instability in the MAC table, duplicate frames generation and so on. Let's move to the video for further detail.
Related news
Wednesday, May 20, 2020
Web-fu - The Ultimate Web Hacking Chrome Extension
Web-fu Is a web hacking tool focused on discovering and exploiting web vulnerabilitites.
BROWSER INTEGRATION
This tool has many advantages, as a browser-embedded webhacking tool, is very useful for scanning browser-authenticated applications, if browser can authenticate and access to the web application, the tool also can. Note that some other tools do not support neither certificate authentication nor web vpn accesses.
The integration with chrome, provides a more comfortable and agile way of web-hacking, and you have all the application data loaded on the hacking tool, you don't need to copy the url, cookies, etc. to the tool, just right click and hack.
The browser rendering engine is also used in this tool, to draw the html of the responses.
FALSES POSITIVES
When I coded this tool, I was obsessed with false positives, which is the main problem in all detection tools. I have implemented a gauss algorithm, to reduce the faslse positives automatically which works very very well, and save a lot of time to the pentester.
VIDEO
Here is a video, with some of the web-fu functionalitites:
VISUAL FEATURES
This tool has a visual crawler. Normal crawlers doesn't parse the ajvascript, this tool does. The visual crawler loads each link of the web site, rendering the html and executing all the javascript as a normal load, then the links are processed from he DOM and clicked.
A visual form cracker, is also available, althow is experimental and only works on some kind of forms.
SCANNING FEATURES
The web-fu's portscanner, has a database of a common web ports, like 80,81,8080 and so on.
The cracker module, can bruteforce web directories to find new attack vectors, and can fuzz get and post parameters for discovering vulns, and also crack passwords. There are 9 preloaded wordlists, and you can also load a custom wordlist. Prefilters, falsepositive reductor and render will be helpful. The scanners support SSL, if the website can be loaded in the chrome, can be scanned by web-fu.
ENCODERS & DECODERS
The supported encoders and decoders are: base64, urlescape and urlencode
OTHER FEATURES
A web notepad is available, saving the information on the browser localStorage, there is one notepad per site. A cookie editor is also very useful for pentesting. The inteceptor, is like a web proxy but from the inside of the browser, you can intercept a request There is also a session locker and a exploit web search.
CHROME STORE
Here is the link to the chrome store, the prize is about one euro, very cheap if you compare with other scanners: Web-Fu on Chrome Store
With webfu, you will do the best web site pentest and vulnerability assessment.
BROWSER INTEGRATION
This tool has many advantages, as a browser-embedded webhacking tool, is very useful for scanning browser-authenticated applications, if browser can authenticate and access to the web application, the tool also can. Note that some other tools do not support neither certificate authentication nor web vpn accesses.
The integration with chrome, provides a more comfortable and agile way of web-hacking, and you have all the application data loaded on the hacking tool, you don't need to copy the url, cookies, etc. to the tool, just right click and hack.
The browser rendering engine is also used in this tool, to draw the html of the responses.
FALSES POSITIVES
When I coded this tool, I was obsessed with false positives, which is the main problem in all detection tools. I have implemented a gauss algorithm, to reduce the faslse positives automatically which works very very well, and save a lot of time to the pentester.
VIDEO
Here is a video, with some of the web-fu functionalitites:
VISUAL FEATURES
This tool has a visual crawler. Normal crawlers doesn't parse the ajvascript, this tool does. The visual crawler loads each link of the web site, rendering the html and executing all the javascript as a normal load, then the links are processed from he DOM and clicked.
A visual form cracker, is also available, althow is experimental and only works on some kind of forms.
SCANNING FEATURES
The web-fu's portscanner, has a database of a common web ports, like 80,81,8080 and so on.
The cracker module, can bruteforce web directories to find new attack vectors, and can fuzz get and post parameters for discovering vulns, and also crack passwords. There are 9 preloaded wordlists, and you can also load a custom wordlist. Prefilters, falsepositive reductor and render will be helpful. The scanners support SSL, if the website can be loaded in the chrome, can be scanned by web-fu.
ENCODERS & DECODERS
The supported encoders and decoders are: base64, urlescape and urlencode
OTHER FEATURES
A web notepad is available, saving the information on the browser localStorage, there is one notepad per site. A cookie editor is also very useful for pentesting. The inteceptor, is like a web proxy but from the inside of the browser, you can intercept a request There is also a session locker and a exploit web search.
CHROME STORE
Here is the link to the chrome store, the prize is about one euro, very cheap if you compare with other scanners: Web-Fu on Chrome Store
With webfu, you will do the best web site pentest and vulnerability assessment.
More articles
Router-Exploit-Shovel: An Automated Application Generator For Stack Overflow Types On Wireless Routers
About Router-Exploit-Shovel
Router-Exploit-Shovel is an automated application generation for Stack Overflow types on Wireless Routers.
Router exploits shovel is an automated application generation tool for stack overflow types on wireless routers. The tool implements the key functions of exploits, it can adapt to the length of the data padding on the stack, generate the ROP chain, generate the encoded shellcode, and finally assemble them into a complete attack code. The user only needs to attach the attack code to the overflow location of the POC to complete the Exploit of the remote code execution.
The tool supports MIPSel and MIPSeb.Run on Ubuntu 16.04 64bit.
Router-Exploit-Shovel's Installation
Open your Terminal and enter these commands:
Usage
Example:
Router-Exploit-Shovel's screenshot
Code structure
ROP chain generation
This tool uses pattern to generate ROP chains. Extract patterns from common ROP exploitation procedure. Use regex matching to find available gadgets to fill up chain strings. Base64 encoding is to avoid duplicate character escapes. For example:
Attackblocks
You can get attackblocks generated in results/attackBlocks.txt. Such as:
You might like these similar tools:
Router-Exploit-Shovel is an automated application generation for Stack Overflow types on Wireless Routers.
Router exploits shovel is an automated application generation tool for stack overflow types on wireless routers. The tool implements the key functions of exploits, it can adapt to the length of the data padding on the stack, generate the ROP chain, generate the encoded shellcode, and finally assemble them into a complete attack code. The user only needs to attach the attack code to the overflow location of the POC to complete the Exploit of the remote code execution.
The tool supports MIPSel and MIPSeb.Run on Ubuntu 16.04 64bit.
Router-Exploit-Shovel's Installation
Open your Terminal and enter these commands:
Usage
Example:
python3 Router_Exploit_Shovel.py -b test_binaries/mipseb-httpd -l test_binaries/libuClibc-0.9.30.so -o 0x00478584
Router-Exploit-Shovel's screenshot
Code structure
ROP chain generation
This tool uses pattern to generate ROP chains. Extract patterns from common ROP exploitation procedure. Use regex matching to find available gadgets to fill up chain strings. Base64 encoding is to avoid duplicate character escapes. For example:
Attackblocks
You can get attackblocks generated in results/attackBlocks.txt. Such as:
You might like these similar tools:
- eXpliot - Internet Of Things Exploitation Framework
- RouterSploit: Exploitation Framework for Embedded Devices
Tuesday, May 19, 2020
HiddenWasp Linux Malware Backdoor Samples
Here are Hidden Wasp Linux backdoor samples.
Enjoy
Reference
Intezer HiddenWasp Malware Stings Targeted Linux Systems
Download
File informatio
8914fd1cfade5059e626be90f18972ec963bbed75101c7fbf4a88a6da2bc671b
8f1c51c4963c0bad6cf04444feb411d7
shell
f321685342fa373c33eb9479176a086a1c56c90a1826a0aef3450809ffc01e5d
52137157fdf019145d7f524d1da884d7
elf
f38ab11c28e944536e00ca14954df5f4d08c1222811fef49baded5009bbbc9a2
ba02a964d08c2afe41963bf897d385e7
shell
e9e2e84ed423bfc8e82eb434cede5c9568ab44e7af410a85e5d5eb24b1e622e3
cbcda5c0dba07faced5f4641aab1e2cd
elf shared-lib
d66bbbccd19587e67632585d0ac944e34e4d5fa2b9f3bb3f900f517c7bbf518b
2b13e6f7d9fafd2eca809bba4b5ea9a6
64bits elf shared-lib
2ea291aeb0905c31716fe5e39ff111724a3c461e3029830d2bfa77c1b3656fc0
568d1ebd8b6fb17744d3c70837e801b9
shell
8e3b92e49447a67ed32b3afadbc24c51975ff22acbd0cf8090b078c0a4a7b53d
33c3f807caea64293add29719596f156
shell
609bbf4ccc2cb0fcbe0d5891eea7d97a05a0b29431c468bf3badd83fc4414578
71d78c97eb0735ec6152a6ff6725b9b2
tar-bundle gzip contains-elf
d596acc70426a16760a2b2cc78ca2cc65c5a23bb79316627c0b2e16489bf86c0
6d1cd68384de9839357a8be27894182b
tar-bundle gzip
0fe1248ecab199bee383cef69f2de77d33b269ad1664127b366a4e745b1199c8
5b134e0a1a89a6c85f13e08e82ea35c3
64bits elf
Continue reading
Ransomware.OSX.KeRanger Samples
Research: New OS X Ransomware KeRanger Infected Transmission BitTorrent Client Installer by Claud Xiao
Sample credit: Claud Xiao
File information
1d6297e2427f1d00a5b355d6d50809cb
Transmission-2.90.dmg
e3ad733cea9eba29e86610050c1a15592e6c77820927b9edeb77310975393574
56b1d956112b0b7bd3e44f20cf1f2c19
Transmission
31b6adb633cff2a0f34cefd2a218097f3a9a8176c9363cc70fe41fe02af810b9
14a4df1df622562b3bf5bc9a94e6a783
General.rtf
d7d765b1ddd235a57a2d13bd065f293a7469594c7e13ea7700e55501206a09b5
24a8f01cfdc4228b4fc9bb87fedf6eb7
Transmission2.90.dmg
ddc3dbee2a8ea9d8ed93f0843400653a89350612f2914868485476a847c6484a
3151d9a085d14508fa9f10d48afc7016
Transmission
6061a554f5997a43c91f49f8aaf40c80a3f547fc6187bee57cd5573641fcf153
861c3da2bbce6c09eda2709c8994f34c
General.rtf
Download
$$$ Bug Bounty $$$
What is Bug Bounty ?
A bug bounty program, also called a vulnerability rewards program (VRP), is a crowdsourcing initiative that rewards individuals for discovering and reporting software bugs. Bug bounty programs are often initiated to supplement internal code audits and penetration tests as part of an organization's vulnerability management strategy.
Many software vendors and websites run bug bounty programs, paying out cash rewards to software security researchers and white hat hackers who report software vulnerabilities that have the potential to be exploited. Bug reports must document enough information for for the organization offering the bounty to be able to reproduce the vulnerability. Typically, payment amounts are commensurate with the size of the organization, the difficulty in hacking the system and how much impact on users a bug might have.
Mozilla paid out a $3,000 flat rate bounty for bugs that fit its criteria, while Facebook has given out as much as $20,000 for a single bug report. Google paid Chrome operating system bug reporters a combined $700,000 in 2012 and Microsoft paid UK researcher James Forshaw $100,000 for an attack vulnerability in Windows 8.1. In 2016, Apple announced rewards that max out at $200,000 for a flaw in the iOS secure boot firmware components and up to $50,000 for execution of arbitrary code with kernel privileges or unauthorized iCloud access.
While the use of ethical hackers to find bugs can be very effective, such programs can also be controversial. To limit potential risk, some organizations are offering closed bug bounty programs that require an invitation. Apple, for example, has limited bug bounty participation to few dozen researchers.
A bug bounty program, also called a vulnerability rewards program (VRP), is a crowdsourcing initiative that rewards individuals for discovering and reporting software bugs. Bug bounty programs are often initiated to supplement internal code audits and penetration tests as part of an organization's vulnerability management strategy.
Many software vendors and websites run bug bounty programs, paying out cash rewards to software security researchers and white hat hackers who report software vulnerabilities that have the potential to be exploited. Bug reports must document enough information for for the organization offering the bounty to be able to reproduce the vulnerability. Typically, payment amounts are commensurate with the size of the organization, the difficulty in hacking the system and how much impact on users a bug might have.
Mozilla paid out a $3,000 flat rate bounty for bugs that fit its criteria, while Facebook has given out as much as $20,000 for a single bug report. Google paid Chrome operating system bug reporters a combined $700,000 in 2012 and Microsoft paid UK researcher James Forshaw $100,000 for an attack vulnerability in Windows 8.1. In 2016, Apple announced rewards that max out at $200,000 for a flaw in the iOS secure boot firmware components and up to $50,000 for execution of arbitrary code with kernel privileges or unauthorized iCloud access.
While the use of ethical hackers to find bugs can be very effective, such programs can also be controversial. To limit potential risk, some organizations are offering closed bug bounty programs that require an invitation. Apple, for example, has limited bug bounty participation to few dozen researchers.
Related posts
Monday, May 18, 2020
RECONNAISSANCE IN ETHICAL HACKING
What is reconnaissance in ethical hacking?
This is the primary phase of hacking where the hacker tries to collect as much information as possible about the target.It includes identifying the target ip address range,network,domain,mail server records etc.
They are of two types-
Active Reconnaissance
Passive Reconnaissance
1-Active Reconnaissance-It the process from which we directly interact with the computer system to gain information. This information can be relevant and accurate but there is a risk of getting detected if you are planning active reconnaissance without permission.if you are detected then the administration will take the severe action action against you it may be jail!
Passive Reconnaissance-In this process you will not be directly connected to a computer system.This process is used to gather essential information without ever interacting with the target system.
This is the primary phase of hacking where the hacker tries to collect as much information as possible about the target.It includes identifying the target ip address range,network,domain,mail server records etc.
They are of two types-
Active Reconnaissance
Passive Reconnaissance
1-Active Reconnaissance-It the process from which we directly interact with the computer system to gain information. This information can be relevant and accurate but there is a risk of getting detected if you are planning active reconnaissance without permission.if you are detected then the administration will take the severe action action against you it may be jail!
Passive Reconnaissance-In this process you will not be directly connected to a computer system.This process is used to gather essential information without ever interacting with the target system.
Continue reading
Resolución De ExpedientesX De Código
Hoy me he topado con algo bastante gracioso que puede liarte unos minutos:
python
>>> import re
>>> a='owjf oasijf aw0oifj osfij 4.4.4.4 oasidjfowefij 192.168.1.1'
ok, pues ahora copy-pasteais cada una de estas:
re.findall('[0-9]̣̣',a)
re.findall('[0-9]',a)
Son exactamente iguales, pero si paseteais una da resultados diferente a si pasteais la otra :)
Pasteamos la primera:
>>> re.findall('[0-9]̣̣',a)
[]
Pasteamos la segunda:
>>> re.findall('[0-9]',a)
['0', '4', '4', '4', '4', '1', '9', '2', '1', '6', '8', '1', '1']
o_O, he repasado caracter a caracter y son visualmente iguales, si mirais en un editor hexa vereis que realmente no lo son, lógicamente no se trata de un expedienteX.
La cuestion es que según la fuente que tengais, debajo de la comilla o debajo del ] hay un punto microscópico :)
Esto es como cuando me emparanoie de que gmail cuando llevas un rato escribiendo un email y se hace auto-save, aparece una especie de acento raro en la pantalla :)
En estos casos, la metodología tipica de copypastear un trozo de la primera sentencia con el resto de la segunda sentencia, te lleva a los 2 caracteres que varían, pero no aprecias (segun la fuente que tengas) la diferéncia.
6572 662e 6e69 6164 6c6c 2728 305b 392d cc5d cca3 27a3 612c 0a29
6572 662e 6e69 6164 6c6c 2728 305b 392d 275d 612c 0a29
Son dígitos unicode, sabe Dios de que pais, y sabe Dios también como los escribí con mi teclado,
se me ocurren bromas de código fuente que se pueden hacer con esto :D, pero vamos, si tenemos metodología de reaccién ante expedientesX, sobretodo aquello de divide y vencerás dicotómico, en pocos minutos se resuelven este tipo de problemas.
python
>>> import re
>>> a='owjf oasijf aw0oifj osfij 4.4.4.4 oasidjfowefij 192.168.1.1'
ok, pues ahora copy-pasteais cada una de estas:
re.findall('[0-9]̣̣',a)
re.findall('[0-9]',a)
Son exactamente iguales, pero si paseteais una da resultados diferente a si pasteais la otra :)
Pasteamos la primera:
>>> re.findall('[0-9]̣̣',a)
[]
Pasteamos la segunda:
>>> re.findall('[0-9]',a)
['0', '4', '4', '4', '4', '1', '9', '2', '1', '6', '8', '1', '1']
o_O, he repasado caracter a caracter y son visualmente iguales, si mirais en un editor hexa vereis que realmente no lo son, lógicamente no se trata de un expedienteX.
La cuestion es que según la fuente que tengais, debajo de la comilla o debajo del ] hay un punto microscópico :)
Esto es como cuando me emparanoie de que gmail cuando llevas un rato escribiendo un email y se hace auto-save, aparece una especie de acento raro en la pantalla :)
En estos casos, la metodología tipica de copypastear un trozo de la primera sentencia con el resto de la segunda sentencia, te lleva a los 2 caracteres que varían, pero no aprecias (segun la fuente que tengas) la diferéncia.
6572 662e 6e69 6164 6c6c 2728 305b 392d cc5d cca3 27a3 612c 0a29
6572 662e 6e69 6164 6c6c 2728 305b 392d 275d 612c 0a29
Son dígitos unicode, sabe Dios de que pais, y sabe Dios también como los escribí con mi teclado,
se me ocurren bromas de código fuente que se pueden hacer con esto :D, pero vamos, si tenemos metodología de reaccién ante expedientesX, sobretodo aquello de divide y vencerás dicotómico, en pocos minutos se resuelven este tipo de problemas.
Related word
CEH: Fundamentals Of Social Engineering
Social engineering is a nontechnical method of breaking into a system or network. It's the process of deceiving users of a system and convincing them to perform acts useful to the hacker, such as giving out information that can be used to defeat or bypass security mechanisms. Social engineering is important to understand because hackers can use it to attack the human element of a system and circumvent technical security measures. This method can be used to gather information before or during an attack.
A social engineer commonly uses the telephone or Internet to trick people into revealing sensitive information or to get them to do something that is against the security policies of the organization. By this method, social engineers exploit the natural tendency of a person to trust their word, rather than exploiting computer security holes. It's generally agreed that users are the weak link in security; this principle is what makes social engineering possible.
The most dangerous part of social engineering is that companies with authentication processes, firewalls, virtual private networks, and network monitoring software are still wide open to attacks, because social engineering doesn't assault the security measures directly. Instead, a social-engineering attack bypasses the security measures and goes after the human element in an organization.
Types of Social Engineering-Attacks
There are two types of Social Engineering attacksHuman-Based
Human-based social engineering refers to person-to-person interaction to retrieve the desired information. An example is calling the help desk and trying to find out a password.Computer-Based
Computer-based social engineering refers to having computer software that attempts to retrieve the desired information. An example is sending a user an email and asking them to reenter a password in a web page to confirm it. This social-engineering attack is also known as phishing.Human-Based Social Engineering
Human-Based further categorized as follow:Impersonating an Employee or Valid User
In this type of social-engineering attack, the hacker pretends to be an employee or valid user on the system. A hacker can gain physical access by pretending to be a janitor, employee, or contractor. Once inside the facility, the hacker gathers information from trashcans, desktops, or computer systems.Posing as an Important User
In this type of attack, the hacker pretends to be an important user such as an executive or high-level manager who needs immediate assistance to gain access to a computer system or files. The hacker uses intimidation so that a lower-level employee such as a help desk worker will assist them in gaining access to the system. Most low-level employees won't question someone who appears to be in a position of authority.Using a Third Person
Using the third-person approach, a hacker pretends to have permission from an authorized source to use a system. This attack is especially effective if the supposed authorized source is on vacation or can't be contacted for verification.Calling Technical Support
Calling tech support for assistance is a classic social-engineering technique. Help desk and technical support personnel are trained to help users, which makes them good prey for social-engineering attacks.Shoulder Surfing
Shoulder surfing is a technique of gathering passwords by watching over a person's shoulder while they log in to the system. A hacker can watch a valid user log in and then use that password to gain access to the system.Dumpster Diving
Dumpster diving involves looking in the trash for information written on pieces of paper or computer printouts. The hacker can often find passwords, filenames, or other pieces of confidential information.Computer-Based Social Engineering
Computer-based social-engineering attacks can include the following:- Email attachments
- Fake websites
- Pop-up windows
Insider Attacks
If a hacker can't find any other way to hack an organization, the next best option is to infiltrate the organization by getting hired as an employee or finding a disgruntled employee to assist in the attack. Insider attacks can be powerful because employees have physical access and are able to move freely about the organization. An example might be someone posing as a delivery person by wearing a uniform and gaining access to a delivery room or loading dock. Another possibility is someone posing as a member of the cleaning crew who has access to the inside of the building and is usually able to move about the offices. As a last resort, a hacker might bribe or otherwise coerce an employee to participate in the attack by providing information such as passwords.Identity Theft
A hacker can pose as an employee or steal the employee's identity to perpetrate an attack. Information gathered in dumpster diving or shoulder surfing in combination with creating fake ID badges can gain the hacker entry into an organization. Creating a persona that can enter the building unchallenged is the goal of identity theft.Phishing Attacks
Phishing involves sending an email, usually posing as a bank, credit card company, or other financial organization. The email requests that the recipient confirm banking information or reset passwords or PINs. The user clicks the link in the email and is redirected to a fake website. The hacker is then able to capture this information and use it for financial gain or to perpetrate other attacks. Emails that claim the senders have a great amount of money but need your help getting it out of the country are examples of phishing attacks. These attacks prey on the common person and are aimed at getting them to provide bank account access codes or other confidential information to the hacker.Online Scams
Some websites that make free offers or other special deals can lure a victim to enter a username and password that may be the same as those they use to access their work system.The hacker can use this valid username and password once the user enters the information in the website form. Mail attachments can be used to send malicious code to a victim's system, which could automatically execute something like a software keylogger to capture passwords. Viruses, Trojans, and worms can be included in cleverly crafted emails to entice a victim to open the attachment. Mail attachments are considered a computer-based social-engineering attack.Continue reading
Top System Related Commands In Linux With Descriptive Definitions
Commands are just like an instructions given to a system to do something and display an output for that instruction. So if you don't know how to gave an order to a system to do a task then how it can do while you don't know how to deal with. So commands are really important for Linux users. If you don't have any idea about commands of Linux and definitely you also don't know about the Linux terminal. You cannot explore Linux deeply. Because terminal is the brain of the Linux and you can do everything by using Linux terminal in any Linux distribution. So, if you wanna work over the Linux distro then you should know about the commands as well.
In this blog you will get a content about commands of Linux which are collectively related to the system. That means if you wanna know any kind of information about the system like operating system, kernel release information, reboot history, system host name, ip address of the host, current date and time and many more.
Note:
If you know about the command but you don't have any idea to use it. In this way you just type the command, then space and then type -h or --help or ? to get all the usage information about that particular command like "uname" this command is used for displaying the Linux system information. You don't know how to use it. Just type the command with help parameter like: uname -h or uname --help etc.uname
The "uname" is a Linux terminal command responsible of displaying the information about Linux system. This command has different parameter to display a particular part of information like kernel release (uname -r) or all the information displayed by typing only one command (uname -a).uptime
This command is used to show how long the system has been running and how much load on it at current state of the CPU. This command is very useful when you system slows down or hang etc and you can easily get the info about the load on the CPU with the help of this command.hostname
The "hostname" is the the command in Linux having different parameters to display the information bout the current host which is running the kernel at that time. If you wanna know about the parameters of hostname command then you just type hostname --help or hostname -h to get all the info about the command and the usage of the command.last reboot
The "last reboot" is the command in Linux operating system used to display the reboot history. You just have to type this command over the Linux terminal it will display the reboot history of that Linux system.date
The "date" is the command used in Linux operating system to show the date of the day along with the current time of the day.cal
The "cal" command in Linux used to display the calendar which has the current date highlighted with a square box along with a current month dates and days just like a real calendar.w
The "w" is the command used in Linux distro for the sake of getting the information about current user. If you type this command it will display who is online at the time.whoami
The "whoami" is the command in Linux operating system used to show the information that who you are logged in as. For example if you are logged in as a root then it'll display "root" etc.finger user
The "finger user" is the command used in Linux distribution to display the information about user which is online currently over that Linux system.- Wargames Hacking
- Herramientas Hacking Android
- Hacking Prank
- Marketing Growth Hacking
- Blog Hacking
- Hacker En Español
- Curso De Hacker Gratis Desde Cero
- Pagina Hacker
- Kali Linux Hacking
- Wifi Hacking
- Curso Ethical Hacking
- Hacking Linkedin
- Hacking Books
- Growth Hacking Que Es
- Growth Hacking Libro
- Hacking Aves
Hacking Everything With RF And Software Defined Radio - Part 3
Reversing Device Signals with RFCrack for Red Teaming
@GarrGhar
Mostly because someone didn't want to pay for a new clicker that was lost LOL
Websites:
Console Cowboys: http://consolecowboys.com
CC Labs: http://cclabs.io
CC Labs Github for RFCrack Code:
https://github.com/cclabsInc/RFCrack
Mostly because someone didn't want to pay for a new clicker that was lost LOL
Websites:
Console Cowboys: http://consolecowboys.com
CC Labs: http://cclabs.io
CC Labs Github for RFCrack Code:
https://github.com/cclabsInc/RFCrack
Contrived Scenario:
Bob was tasked to break into XYZ corporation, so he pulled up the facility on google maps to see what the layout was. He was looking for any possible entry paths into the company headquarters. Online maps showed that the whole facility was surrounded by a security access gate. Not much else could be determined remotely so bob decided to take a drive to the facility and get a closer look.
Bob parked down the street in view of the entry gate. Upon arrival he noted the gate was un-manned and cars were rolling up to the gate typing in an access code or simply driving up to the gate as it opening automatically. Interestingly there was some kind of wireless technology in use.
How do we go from watching a car go through a gate, to having a physical device that opens the gate?
We will take a look at reversing a signal from an actual gate to program a remote with the proper RF signal. Learning how to perform these steps manually to get a better understanding of how RF remotes work in conjunction with automating processes with RFCrack.
Items used in this blog:
Garage Remote Clicker: https://goo.gl/7fDQ2NYardStick One: https://goo.gl/wd88sr
RTL SDR: https://goo.gl/B5uUAR
Walkthrough Video:
Remotely sniffing signals for later analysis:
In the the previous blogs, we sniffed signals and replayed them to perform actions. In this blog we are going to take a look at a signal and reverse it to create a physical device that will act as a replacement for the original device. Depending on the scenario this may be a better approach if you plan to enter the facility off hours when there is no signal to capture or you don't want to look suspicious.
Recon:
Lets first use the scanning functionality in RFCrack to find known frequencies. We need to understand the frequencies that gates usually use. This way we can set our scanner to a limited number of frequencies to rotate through. The smaller rage of frequencies used will provide a better chance of capturing a signal when a car opens the target gate. This would be beneficial if the scanning device is left unattended within a dropbox created with something like a Kali on a Raspberry Pi. One could access it from a good distance away by setting up a wifi hotspot or cellular connection.
Based on research remotes tend to use 315Mhz, 390Mhz, 433Mhz and a few other frequencies. So in our case we will start up RFCrack on those likely used frequencies and just let it run. We can also look up the FCID of our clicker to see what Frequencies manufactures are using. Although not standardized, similar technologies tend to use similar configurations. Below is from the data sheet located at https://fccid.io/HBW7922/Test-Report/test-report-1755584 which indicates that if this gate is compatible with a universal remote it should be using the 300,310, 315, 372, 390 Frequencies. Most notably the 310, 315 and 390 as the others are only on a couple configurations.
RFCrack Scanning:
Since the most used ranges are 310, 315, 390 within our universal clicker, lets set RFCrack scanner to rotate through those and scan for signals. If a number of cars go through the gate and there are no captures we can adjust the scanner later over our wifi connection from a distance.
Destroy:RFCrack ficti0n$ python RFCrack.py -k -f 310000000 315000000 390000000
Currently Scanning: 310000000 To cancel hit enter and wait a few seconds
Currently Scanning: 315000000 To cancel hit enter and wait a few seconds
Currently Scanning: 390000000 To cancel hit enter and wait a few seconds
e0000000000104007ffe0000003000001f0fffe0fffc01ff803ff007fe0fffc1fff83fff07ffe0007c00000000000000000000000000000000000000000000e0007f037fe007fc00ff801ff07ffe0fffe1fffc3fff0001f00000000000000000000000000000000000000000000003809f641fff801ff003fe00ffc1fff83fff07ffe0fffc000f80000000000000000000000000000000000000000000003c0bff01bdf003fe007fc00ff83fff07ffe0fffc1fff8001f0000000000000000000000000000000000000000000000380000000000000000002007ac115001fff07ffe0fffc000f8000000000000000000000000000000000000000
Currently Scanning: 433000000 To cancel hit enter and wait a few seconds
Example of logging output:
From the above output you will see that a frequency was found on 390. However, if you had left this running for a few hours you could easily see all of the output in the log file located in your RFCrack/scanning_logs directory. For example the following captures were found in the log file in an easily parseable format:
Destroy:RFCrack ficti0n$ cd scanning_logs/
Destroy:scanning_logs ficti0n$ ls
Dec25_14:58:45.log Dec25_21:17:14.log Jan03_20:12:56.log
Destroy:scanning_logs ficti0n$ cat Dec25_21\:17\:14.log
A signal was found on :390000000
c0000000000000000000000000008000000000000ef801fe003fe0fffc1fff83fff07ffe0007c0000000000000000000000000000000000000000000001c0000000000000000050003fe0fbfc1fffc3fff83fff0003e00000000000000000000000000000000000000000000007c1fff83fff003fe007fc00ff83fff07ffe0fffc1fff8001f00000000000000000000000000000000000000000000003e0fffc1fff801ff003fe007fc1fff83fff07ffe0fffc000f80000000000000000000000000000000000000000000001f07ffe0dffc00ff803ff007fe0fffc1fff83fff07ffe0007c000000000000000000000000000000000000000000
A signal was found on :390000000
e0000000000104007ffe0000003000001f0fffe0fffc01ff803ff007fe0fffc1fff83fff07ffe0007c00000000000000000000000000000000000000000000e0007f037fe007fc00ff801ff07ffe0fffe1fffc3fff0001f00000000000000000000000000000000000000000000003809f641fff801ff003fe00ffc1fff83fff07ffe0fffc000f80000000000000000000000000000000000000000000003c0bff01bdf003fe007fc00ff83fff07ffe0fffc1fff8001f0000000000000000000000000000000000000000000000380000000000000000002007ac115001fff07ffe0fffc000f8000000000000000000000000000000000000000
Analyzing the signal to determine toggle switches:
Ok sweet, now we have a valid signal which will open the gate. Of course we could just replay this and open the gate, but we are going to create a physical device we can pass along to whoever needs entry regardless if they understand RF. No need to fumble around with a computer and look suspicious. Also replaying a signal with RFCrack is just to easy, nothing new to learn taking the easy route.
The first thing we are going to do is graph the capture and take a look at the wave pattern it creates. This can give us a lot of clues that might prove beneficial in figuring out the toggle switch pattern found in remotes. There are a few ways we can do this. If you don't have a yardstick at home you can capture the initial signal with your cheap RTL-SDR dongle as we did in the first RF blog. We could then open it in audacity. This signal is shown below.
The other option is let RFCrack help you out by taking a signal from the log output above and let RFCrack plot it for you. This saves time and allows you to use only one piece of hardware for all of the work. This can easily be done with the following command:
Destroy:RFCrack ficti0n$ python RFCrack.py -n -g -u 1f0fffe0fffc01ff803ff007fe0fffc1fff83fff07ffe0007c
-n = No yardstick attached
-g = graph a single signal
-u = Use this piece of data
From the graph output we see 2 distinct crest lengths and some junk at either end we can throw away. These 2 unique crests correspond to our toggle switch positions of up/down giving us the following 2 possible scenarios using a 9 toggle switch remote based on the 9 crests above:
Possible toggle switch scenarios:
- down down up up up down down down down
- up up down down down up up up up
Configuring a remote:
Proper toggle switch configuration allows us to program a universal remote that sends a signal to the gate. However even with the proper toggle switch configuration the remote has many different signals it sends based on the manufacturer or type of signal. In order to figure out which configuration the gate is using without physically watching the gate open, we will rely on local signal analysis/comparison.
Programming a remote is done by clicking the device with the proper toggle switch configuration until the gate opens and the correct manufacturer is configured. Since we don't have access to the gate after capturing the initial signal we will instead compare each signal from he remote to the original captured signal.
Comparing Signals:
This can be done a few ways, one way is to use an RTLSDR and capture all of the presses followed by visually comparing the output in audacity. Instead I prefer to use one tool and automate this process with RFCrack so that on each click of the device we can compare a signal with the original capture. Since there are multiple signals sent with each click it will analyze all of them and provide a percent likelihood of match of all the signals in that click followed by a comparing the highest % match graph for visual confirmation. If you are seeing a 80-90% match you should have the correct signal match.
Note: Not every click will show output as some clicks will be on different frequencies, these don't matter since our recon confirmed the gate is communicating on 390Mhz.
In order to analyze the signals in real time you will need to open up your clicker and set the proper toggle switch settings followed by setting up a sniffer and live analysis with RFCrack:
Open up 2 terminals and use the following commands:
#Setup a sniffer on 390mhz
Setup sniffer: python RFCrack.py -k -c -f 390000000.
Setup sniffer: python RFCrack.py -k -c -f 390000000.
#Monitor the log file, and provide the gates original signal
Setup Analysis: python RFCrack.py -c -u 1f0fffe0fffc01ff803ff007fe0fffc1fff83fff07ffe0007c -n.
Setup Analysis: python RFCrack.py -c -u 1f0fffe0fffc01ff803ff007fe0fffc1fff83fff07ffe0007c -n.
Cmd switches used
-k = known frequency
-c = compare mode
-f = frequency
-n = no yardstick needed for analysis
Make sure your remote is configured for one of the possible toggle configurations determined above. In the below example I am using the first configuration, any extra toggles left in the down position: (down down up up up down down down down)
Analyze Your Clicks:
Now with the two terminals open and running click the reset switch to the bottom left and hold till it flashes. Then keep clicking the left button and viewing the output in the sniffing analysis terminal which will provide the comparisons as graphs are loaded to validate the output. If you click the device and no output is seen, all that means is that the device is communicating on a frequency which we are not listening on. We don't care about those signals since they don't pertain to our target.
At around the 11th click you will see high likelihood of a match and a graph which is near identical. A few click outputs are shown below with the graph from the last output with a 97% match. It will always graph the highest percentage within a click. Sometimes there will be blank graphs when the data is wacky and doesn't work so well. This is fine since we don't care about wacky data.
You will notice the previous clicks did not show even close to a match, so its pretty easy to determine which is the right manufacture and setup for your target gate. Now just click the right hand button on the remote and it should be configured with the gates setup even though you are in another location setting up for your test.
For Visual of the last signal comparison go to ./imageOutput/LiveComparison.png
----------Start Signals In Press--------------
Percent Chance of Match for press is: 0.05
Percent Chance of Match for press is: 0.14
Percent Chance of Match for press is: 0.14
Percent Chance of Match for press is: 0.12
----------End Signals In Press------------
For Visual of the last signal comparison go to ./imageOutput/LiveComparison.png
----------Start Signals In Press--------------
Percent Chance of Match for press is: 0.14
Percent Chance of Match for press is: 0.20
Percent Chance of Match for press is: 0.19
Percent Chance of Match for press is: 0.25
----------End Signals In Press------------
For Visual of the last signal comparison go to ./imageOutput/LiveComparison.png
----------Start Signals In Press--------------
Percent Chance of Match for press is: 0.93
Percent Chance of Match for press is: 0.93
Percent Chance of Match for press is: 0.97
Percent Chance of Match for press is: 0.90
Percent Chance of Match for press is: 0.88
Percent Chance of Match for press is: 0.44
----------End Signals In Press------------
For Visual of the last signal comparison go to ./imageOutput/LiveComparison.png
Graph Comparison Output for 97% Match:
Conclusion:
You have now walked through successfully reversing a toggle switch remote for a security gate. You took a raw signal and created a working device using only a Yardstick and RFCrack. This was just a quick tutorial on leveraging the skillsets you gained in previous blogs in order to learn how to analyze RF signals within embedded devices. There are many scenarios these same techniques could assist in. We also covered a few new features in RF crack regarding logging, graphing and comparing signals. These are just a few of the features which have been added since the initial release. For more info and other features check the wiki.
Related articles
Sunday, May 17, 2020
Web Hacking Video Series #4 MySQL Part 2 (Injection And Coding)
Video Lesson Topics:
Part 2 of Mysql covers the topic of injecting a simple SQL injection example. Starts out slow then combines techniques and moves into more advanced topics. Prior to attempting this lesson make sure you have watched the videos in the previous blog or understand both SQL and basic python coding. I will show how to automate the injection process via python utilizing simple HTML processing abilities of beautiful soup. I will cover many python libraries for encoding data and calling web based applications. I also talk about how to deal with encrypted data and methods of enumerating files and folders looking for possible implementation issues and attack points to decrypt sensitive data via PHP/Python interaction with whats available on the server. This is the 2nd part of a 3 part series on MySQL for attacking web applications.
BT5
Recoding PHP applications to fix SQLi
- Setting up your victim application, databases and lab
- Attacking a simple injection with information Schema
- Automating your injections with python and beautiful soup
- Dealing with various web encoding in Python and PHP
- Bypassing LoadFile Size restrictions and automating it
- Decrypting sensitive data via PHP and Python interactions
- As always me rambling about stupid nonsense :P FTW
Part 2 of Mysql covers the topic of injecting a simple SQL injection example. Starts out slow then combines techniques and moves into more advanced topics. Prior to attempting this lesson make sure you have watched the videos in the previous blog or understand both SQL and basic python coding. I will show how to automate the injection process via python utilizing simple HTML processing abilities of beautiful soup. I will cover many python libraries for encoding data and calling web based applications. I also talk about how to deal with encrypted data and methods of enumerating files and folders looking for possible implementation issues and attack points to decrypt sensitive data via PHP/Python interaction with whats available on the server. This is the 2nd part of a 3 part series on MySQL for attacking web applications.
Files Needed:
Lab FilesBT5
Video Lesson:
Whats Next:
PHP source code analysisRecoding PHP applications to fix SQLi
Related word
- Como Convertirse En Hacker
- Udemy Hacking
- Hacking Ethical
- Hacking Tutorials
- Hacking Iphone
- Hacking Etico Que Es
- Hacking Websites
- Certificacion Ethical Hacking
- Aprender Seguridad Informatica
- Hacking Wifi Android
- Body Hacking
- Hacking Xbox One
- Como Aprender A Hackear
- Travel Hacking
- Hacking Windows: Ataques A Sistemas Y Redes Microsoft
- Viral Hacking
Subscribe to:
Posts (Atom)